Pulsar planet

Pulsar planets are planets that are found orbiting pulsars, or rapidly rotating neutron stars. The first such planet to be discovered was around a millisecond pulsar and was the first extrasolar planet to be confirmed as discovered.

Contents

Pulsar planets

Pulsar planets are discovered through pulsar timing measurements, to detect anomalies in the pulsation period. Any bodies orbiting the pulsar will cause regular changes in its pulsation. Since pulsars normally rotate at near-constant speed, any changes can easily be detected with the help of precise timing measurements. The discovery of pulsar planets was unexpected; pulsars or neutron stars have previously gone supernova, and it was thought that any planets orbiting such stars would have been destroyed in the explosion.

In 1991, Andrew G. Lyne announced the first ever pulsar planet discovered around PSR 1829-10.[1] However, this was later retracted,[2] just before the first real pulsar planets were announced.

In 1992, Aleksander Wolszczan and Dale Frail announced the discovery of a multi-planet planetary system around the millisecond pulsar PSR 1257+12.[3] These were the first two extrasolar planets confirmed to be discovered, and thus the first multi-planet extrasolar planetary system discovered, and the first pulsar planets discovered. There was doubt concerning the discovery because of the retraction of the previous pulsar planet, and questions about how pulsars could have planets. However, the planets proved to be real.[4] Two additional planets of lower mass were later discovered by the same technique.

In 2000, the millisecond pulsar PSR B1620-26 was found to have a circumbinary planet (PSR B1620-26 b) that orbits both it and its companion white dwarf, WD B1620-26. This was announced as the oldest planet ever discovered, at 12.6 billion years old.[5] It is currently believed to have originally been the planet of WD B1620-26 before becoming a circumbinary planet, and therefore, while discovered through the pulsar timing method, it did not form the way that PSR B1257+12's planets are thought to have.

In 2006, the magnetar 4U 0142+61, located 13,000 light years from Earth, was found to have a circumstellar disk. The discovery was made by a team led by Deepto Chakrabarty of MIT using the Spitzer Space Telescope.[6] The disk is thought to have formed from metal-rich debris left over from the supernova that formed the pulsar roughly 100,000 years ago and is similar to those seen around Sun-like stars, suggesting it may be capable of forming planets in a similar fashion. Pulsar planets would be unlikely to harbour life as we know it, because the high levels of ionizing radiation emitted by the pulsar and the corresponding paucity of visible light.

In 2011, a planet that is theorized to be the remaining core of a star that orbited a pulsar was announced. It orbits millisecond pulsar PSR J1719-1438, and represents a path to planetary status by evaporation of a star.[7][8] The planet is estimated to have a density of 18 times that of water, 55,000km diameter, a mass near that of Jupiter's, and a 2hr10min orbital period at 600,000km. It is thought to be the diamond crystal core remaining from the evaporated white dwarf, with an estimated 1031 carat weight.[9][10]

There are two types of pulsar planets known so far. The PSR B1257+12 planets were formed out of the debris of a destroyed companion star that used to orbit the pulsar. In PSR J1719-1438, the planet most likely is the companion, or what's left of it after being almost entirely blasted away by the extreme irradiation from the nearby pulsar.

List of pulsar planets

Confirmed planets

Pulsar Planetary object Mass Semimajor axis
(AU)
Orbital period
Discovered
PSR B1620-26 PSR B1620-26 b 2.5 MJ 23 100 years 2003
PSR B1257+12 PSR B1257+12 A 0.020 M 0.19 25.262±0.003 days 1994
PSR B1257+12 B 4.3 M 0.36 66.5419±0.0001 days 1992
PSR B1257+12 C 3.90 M 0.46 98.2114±0.0002 days 1992
PSR B1257+12 D 0.0004 M ~2.6 ~3.5 years 2002

Candidate planets

Pulsar Planetary object Mass Semimajor axis
(AU)
Orbital period Announced
PSR J1719-1438 PSR J1719-1438 b ~1 MJ 0.0004 2.176951032 hours 25 August 2011

Doubtful planets

Pulsar Planetary object Mass Semimajor axis
(AU)
Orbital period Announced
Geminga Geminga b 1.7 M 3.3 5.1 years 1997
PSR B0329+54 PSR B0329+54 A 0.3 M 2.3 1205.358±0.003 days 1979
PSR B0329+54 B 2.2 M 7.3 61728.94±0.003 days 1979
PSR B1828-10 PSR B1828-10 A 3 M 0.93 384.3649 days 1992
PSR B1828-10 B 12 M 1.32 493.077375 days 1992
PSR B1828-10 C 8 M  ?  ? 1992

Protoplanetary disks

Pulsar Protoplanetary disk Discovered
4U 0142+61 4U 0142+61's proplyd 2006

Disproven planets

Pulsar Planet Mass
PSR 1829-10 PSR 1829-10 A 10 ME

See also

References

  1. ^ Nature vol.352 no.6333 : A planet orbiting the neutron star PSR1829–10
  2. ^ Nature vol.355 no.6357 : No planet orbiting PS R1829–10
  3. ^ Wolszczan, A., Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature 355 (6356): 145–147. Bibcode 1992Natur.355..145W. doi:10.1038/355145a0. 
  4. ^ Wolszczan, A. (1994). "Confirmation of Earth Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12". Science 264 (5158): 538–542. Bibcode 1994Sci...264..538W. doi:10.1126/science.264.5158.538. PMID 17732735. 
  5. ^ Britt, Robert Roy. "Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life". Space.com. http://www.space.com/scienceastronomy/oldest_planet_030710-1.html. Retrieved 2007-06-12. 
  6. ^ "Scientists crack mystery of planet formation". CNN.com. April 5, 2006. Archived from the original on 2006-04-08. http://web.archive.org/web/20060408091404/http://www.cnn.com/2006/TECH/space/04/05/supernova.blast.ap/index.html. Retrieved 2006-04-05. 
  7. ^ Max Planck Institute, "A Planet made of Diamond", 25 August 2011
  8. ^ Reuters, "Astronomers discover planet made of diamond", Ben Hirschler, 25 August 2011
  9. ^ National Geographic, "Diamond" Planet Found; May Be Stripped Star", Andrew Fazekas, 25 August 2011
  10. ^ New Scientist, "Astrophile: The diamond as big as a planet", David Shiga, 25 August 2011